Chapter 1

Metric space

1.1 Definition and Examples

Definition 1.1.1. (Metric space). Let X be a nonempty set. A metric (or a distance) d on X is a function

$$
d: X \times X \longrightarrow R
$$

which satisfies the following properties:
(M1) $d(x, y)=0$ if and only if $x=y$,
(M2) $d(x, y)=d(y, x)$ for all $x, y \in X$, (Symmetry)
(M3) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$, (Triangle inequality)
The pair $(X d)$ is called a metric space.
Example 1.1.2. (Positivity of the metric). Prove that any metric $d: X \times$ $X \longrightarrow \mathbb{R}$ satisfy the following property:

$$
\left(M 1^{\prime}\right) \quad d(x, y) \geq 0 \quad \forall x, y \in X . \quad \text { (Positivity) }
$$

Example 1.1.3. (The Real line). Let \mathbb{R} be the set of all real numbers.

Define a metric $d: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
d(x, y)=|x-y| \tag{1.1}
\end{equation*}
$$

Then (\mathbb{R}, d) is a metric space. We refer to this metric as the standard metric on \mathbb{R}.

Example 1.1.4. Prove that the set of all positive rational numbers \mathbb{Q}_{+} with the metric $d(x, y)=\left|\log \left(\frac{x}{y}\right)\right|$ is a metric space.

Example

$d(x, y)=\left|\log \left(\frac{x}{y}\right)\right|$ is not metric on \mathbb{Q}.

Example

$d(x, y)=\left|\log \left(\frac{|x|}{|y|}\right)\right|$ is not metric on \mathbb{Q}.
Example 1.1.5. (Discreet metric). Let X be an arbitrary set. Define discreet metric $d: X \times X \longrightarrow \mathbb{R}$ by

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

Prove that (X, d) is a metric space.
Example 1.1.6. (Euclidean space \mathbb{R}^{N}). Let $N \in \mathbb{N}$ be a natural number and let \mathbb{R}^{N} be the space of N -vectors of real numbers:

$$
\mathbb{R}^{N}=\left\{f\left(x_{1}, x_{2}, \cdots, x_{N}\right) \mid x_{1}, \cdots, x_{N} \in \mathbb{R}\right\}
$$

When we write $x \in \mathbb{R}^{N}$ this means x is an N -vector, that is $x=\left(x_{1}, x_{2}, \cdots, x_{N}\right)$. We define the Euclidean metric $d_{2}: \mathbb{R}^{N} \times \mathbb{R}^{N} \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
d_{2}(x, y)=\sqrt{\left|x_{1}-y_{1}\right|^{2}+\cdots+\left|x_{N}-y_{N}\right|^{2}} \tag{1.2}
\end{equation*}
$$

Then $\left(\mathbb{R}^{N}, d_{2}\right)$ is a metric space, which we call Eucleadean space of dimen-
sion N .

Example 1.1.7. (Taxi-cab metric on \mathbb{R}^{N}). Let $N \in \mathbb{N}$ be a natural number and let \mathbb{R}^{N} be the space of N -vectors as before. We define the taxi-cab metric $d_{1}: \mathbb{R}^{N} \times \mathbb{R}^{N} \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
d_{1}(x, y)=\left|x_{1}-y_{1}\right|+\cdots+\left|x_{N}-y_{N}\right| \tag{1.3}
\end{equation*}
$$

Then $\left(\mathbb{R}^{N}, d_{1}\right)$ is a metric space.

Example 1.1.8. $\left(\infty\right.$-metric on $\left.\mathbb{R}^{N}\right)$. Again let $N \in \mathbb{N}$ be a natural number and let \mathbb{R}^{N} be as before. We define the sup-norm metric $d_{\infty}: \mathbb{R}^{N} \times \mathbb{R}^{N} \longrightarrow$ \mathbb{R} by

$$
\begin{equation*}
d_{\infty}(x, y)=\max \left\{\left|x_{1}-y_{1}\right|, \cdots,\left|x_{N}-y_{N}\right|\right\} \tag{1.4}
\end{equation*}
$$

Then $\left(\mathbb{R}^{N}, d_{\infty}\right)$ is a metric space.

Remark 1.1.9. The d_{1}, d_{2} and d_{∞} metrics on \mathbb{R}^{N} are special cases of the more general d_{p}-metric on \mathbb{R}^{N},

$$
\begin{equation*}
d_{p}(x, y)=\left(\left|x_{1}-y_{1}\right|^{p}+\cdots+\left|x_{N}-y_{N}\right|^{p}\right)^{\frac{1}{p}} \tag{1.5}
\end{equation*}
$$

where $p \in[1, \infty)$. Note that $d_{\infty}<d_{2}<d_{1}$.
Example 1.1.10. (Metric of uniform convergence on $C([a, b]))$. Let $C([a, b])$ denote the set of continuous functions $f:[a, b] \longrightarrow \mathbb{R}$,

$$
\begin{equation*}
C([a, b])=\{f:[a, b] \longrightarrow \mathbb{R} \mid f \text { is continuous on }[a, b]\} . \tag{1.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
d_{\infty}(f, g)=\max _{x \in[a, b]}|f(x)-g(x)| \tag{1.7}
\end{equation*}
$$

is a metric on $C([a, b])$. This metric is known as metric of uniform convergence, or ∞-metric on $C([a, b])$.

Example 1.1.11. Let $f(x)=x^{2}$ and $g(x)=x^{3}$. Find the distances $d_{\infty}(f, g)$ in $C([0,1])$, and in $C([-1,1])$.

