Chapter 1

Metric space

1.1 Definition and Examples

Definition 1.1.1. (Metric space). Let X be a nonempty set. A metric (or a distance) d on X is a function

$$d: X \times X \longrightarrow R$$

which satisfies the following properties:

(M1)
$$d(x, y) = 0$$
 if and only if $x = y$,

(M2)
$$d(x,y) = d(y,x)$$
 for all $x, y \in X$, (Symmetry)

(M3)
$$d(x,z) \le d(x,y) + d(y,z)$$
 for all $x,y,z \in X$, (Triangle inequality)

The pair (Xd) is called a metric space.

Example 1.1.2. (Positivity of the metric). Prove that any metric $d: X \times X \longrightarrow \mathbb{R}$ satisfy the following property:

$$(M1')$$
 $d(x,y) \ge 0 \quad \forall x, y \in X.$ (Positivity)

Example 1.1.3. (The Real line). Let \mathbb{R} be the set of all real numbers.

Define a metric $d: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ by

$$d(x,y) = |x - y| \tag{1.1}$$

Then (\mathbb{R}, d) is a metric space. We refer to this metric as the standard metric on \mathbb{R} .

Example 1.1.4. Prove that the set of all positive rational numbers \mathbb{Q}_+ with the metric $d(x,y) = |log(\frac{x}{y})|$ is a metric space.

Example

 $d(x,y) = |log(\frac{x}{y})|$ is not metric on \mathbb{Q} .

Example

 $d(x,y) = |log(\frac{|x|}{|y|})|$ is not metric on \mathbb{Q} .

Example 1.1.5. (Discreet metric). Let X be an arbitrary set. Define discreet metric $d: X \times X \longrightarrow \mathbb{R}$ by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$$

Prove that (X, d) is a metric space.

Example 1.1.6. (Euclidean space \mathbb{R}^N). Let $N \in \mathbb{N}$ be a natural number and let \mathbb{R}^N be the space of N-vectors of real numbers:

$$\mathbb{R}^N = \{ f(x_1, x_2, \cdots, x_N) | x_1, \cdots, x_N \in \mathbb{R} \}$$

When we write $x \in \mathbb{R}^N$ this means x is an N-vector, that is $x = (x_1, x_2, \dots, x_N)$. We define the Euclidean metric $d_2 : \mathbb{R}^N \times \mathbb{R}^N \longrightarrow \mathbb{R}$ by

$$d_2(x,y) = \sqrt{|x_1 - y_1|^2 + \dots + |x_N - y_N|^2}$$
 (1.2)

Then (\mathbb{R}^N, d_2) is a metric space, which we call Eucleadean space of dimen-

sion N.

Example 1.1.7. (Taxi-cab metric on \mathbb{R}^N). Let $N \in \mathbb{N}$ be a natural number and let \mathbb{R}^N be the space of N-vectors as before. We define the taxi-cab metric $d_1: \mathbb{R}^N \times \mathbb{R}^N \longrightarrow \mathbb{R}$ by

$$d_1(x,y) = |x_1 - y_1| + \dots + |x_N - y_N|$$
(1.3)

Then (\mathbb{R}^N, d_1) is a metric space.

Example 1.1.8. (∞ -metric on \mathbb{R}^N). Again let $N \in \mathbb{N}$ be a natural number and let \mathbb{R}^N be as before. We define the sup-norm metric $d_\infty: \mathbb{R}^N \times \mathbb{R}^N \longrightarrow$ \mathbb{R} by

$$d_{\infty}(x,y) = \max\{|x_1 - y_1|, \cdots, |x_N - y_N|\}$$
 Then $(\mathbb{R}^N, d_{\infty})$ is a metric space. (1.4)

Remark 1.1.9. The d_1, d_2 and d_{∞} metrics on \mathbb{R}^N are special cases of the more general d_p -metric on \mathbb{R}^N ,

$$d_p(x,y) = (|x_1 - y_1|^p + \dots + |x_N - y_N|^p)^{\frac{1}{p}}$$
(1.5)

where $p \in [1, \infty)$. Note that $d_{\infty} < d_2 < d_1$.

Example 1.1.10. (Metric of uniform convergence on C([a,b])). Let C([a,b])denote the set of continuous functions $f:[a,b] \longrightarrow \mathbb{R}$,

$$C([a,b]) = \{f : [a,b] \longrightarrow \mathbb{R} | f \text{ is continuous on } [a,b] \}.$$
 (1.6)

Then

$$d_{\infty}(f,g) = \max_{x \in [a,b]} |f(x) - g(x)| \tag{1.7}$$

is a metric on C([a,b]). This metric is known as metric of uniform convergence, or ∞ -metric on C([a,b]).

Example 1.1.11. Let $f(x) = x^2$ and $g(x) = x^3$. Find the distances $d_{\infty}(f,g)$ in C([0,1]), and in C([-1,1]).